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The numerical resolution of kinetic equations and, in particular, of Vlasov-type
equations is performed most of the time using particle in cell methods which consist
in describing the time evolution of the equation through a finite number of particles
which follow the characteristic curves of the equation, the interaction with the external
and self-consistent fields being resolved using a grid. Another approach consists in
computing directly the distribution function on a grid by following the characteristics
backward in time for one time step and interpolating the value at the feet of the
characteristics using the grid point values of the distribution function at the previous
time step. In this report we introduce this last method, which couples the Lagrangian
and Eulerian points of view and its use for the Vlasov equation and equations derived
from it. (© 1999 Academic Press

Key Words:computational plasma physics; Vlasov equations; semi-Lagrangian
method; time splitting.

1. INTRODUCTION

The numerical resolution of kinetic equations, the solution of which depends, in additi
to the time, on three space variables and three velocity variables, is performed most o
time using particle-in-cell (PIC) methods which enable us to get satisfying results w
relatively few particles. However, for some applications, in particular when particles in t
tail of the distribution play an important physical role or when the numerical noise d
to the finite number of superparticles becomes too important, methods which compute
solution on a grid in phase space have proven to better describe the physics [1-3].
methods are all the more interesting when using parallel computers as they are very sca
[4]. On the other hand, although PIC methods can be parallelized fairly well, it is very he
to maintain good load balancing as particles move from domain to domain, whereas w
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202 SONNENDRJCKER ET AL.

using a fixed grid it is straightforward to achieve a perfect load balancing throughout
run.
In order to compute the solution of the one-dimensional Vlasov equation
of of

of
 4v— 4+ EX ) — = 1
at T T (X’)au 0, 1)

coupled with Poisson’s equation,

OE +00
87:/_00 f(x,v,t)dv —1 (2)

for E, the following procedure, originally introduced by Cheng and Knorr [5] and makin
full use of time-splitting, can be used to go from time stefo tn1:

1. Perform a half time step shift along theaxis f*(x, v) = f"(x —vAt/2, v)

2. Compute the electric field at tintg, 1,» by substitutingf * in the Poisson equation (2)
3. Perform a shift along the-axis f**(x, v) = f*(X, v — E(X, th11/2) At)

4. Performasecond halftime step shift alongthaxis f "1 (x, v) = f**(x — vAt/2, v).

This method, called Eulerian because it used a phase space grid instead of particles, pi
to work very well in this case. Moreover, the shifts alongr v are nothing but Lagrangian
advections since the method is equivalent to solving the characteristics of the Vlasov e
tion. The advantage is that the scheme can use larger time steps than explicit Eulerian
the price to pay is to reconstruct a regular grid using interpolation. However, it could r
be applied as easily to other kinds of Vlasov problems like, for instance, the guiding-cer
approximation,

af  E(xt) xB

a Bz . VX f == O, (3)

coupled with Poisson’s equation, where the advection &¢rat) x B/B? depends ox
and the time-splitting method cannot be applied, or to a reduced relativistic Vlasov equa

like
of pof 10,5 of
ot I b (By——=——(A2(x,1)) ) — =0 4

where

y = \/1+ P2+ A7 (X, 1),

coupled with Maxwell's equations for the vector potenthal, where a similar problem
occurs. These problems pushed us to try to extend the scope of application of the met
This could be done, using the so-called semi-Lagrangian method or backward chara
istics method which had already been investigated by the fluid dynamics community
especially in weather and climate simulation [6]. A mathematical analysis of the mett
has also been performed by Bermejo [7] and more recently by Falcone and Ferreti [8],
cost-effectiveness was investigated by Bartello and Thomas [10].

Letus mentionthat FCT whichis purely eulerian has also been used for solving the Vla
equation [11] and for stiff problems a semi-Lagrangian method using shape-presen
splines for the interpolation was introduced in [12].
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This paper is organised as follows. In the next section we are going to present a nun
of Vlasov equations that we would like to be able to solve with our method, this will le
to an abstract formulation which will enclose all those equations. Then we shall introd
the semi-Lagrangian method for our abstract formulation and discuss some simplificat
in special cases. After that we shall describe the implementation of the method in the t
dimensional case and finally numerical results will be presented for the guiding cer
model which is the easiest problem where both difficulties not addressed by the previo
used methods are present, namely that the advection field depends on the advected ve
and time splitting cannot be performed.

2. DIFFERENT TYPES OF VLASOV EQUATIONS

The ultimate model we would like to use in order to describe the behaviour of a plas
is the relativistic three-dimensional Vlasov model which reads, for instance for an elect
gas withe=m=1,

of
+p-fo+(E+pr).fo=O, 5)
ot 1% y

wherey is the Lorentz factot1 + p + p3 + p2)*/?, or for its nonrelativistic counterpart,

%+v-vxf+(E+v><B)-VUf=O, (6)
coupled to Maxwell's equations or some approximation of those. However, this would
quire a a six-dimensional grid and, as a minimum of points are required in each direct
to represent the physics correctly, this would be too large even for the largest multiproc
sor computer available today. Therefore, we shall investigate reduced models, which
adequate for describing specific physical problems.

The simplest model we are interested in, beyond the 1D electrostatic model, is the
electrostatic one which reads

g_:+v.vxf+E(x,t)-Vuf=0, )

coupled with Poisson’s equation

—A¢=1—/fdv,

whereE =—V¢.

The next category of models is motivated by the important problems of the nonline
interaction of high intensity ultrashort laser pulses with plasmas, with specific applicati
to particle acceleration or inertial confinement fusion purpose. It consisté of ]L% D,
and 2% D electromagnetic models,

of
+p-fo+(E+pr>.fo=O, ®)
ot % y

where, compared to the full relativistic model (6) E andB depend only on one or two
space variables anfl depends on two or three momentum components. Moreover, sol
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components of the fields may vanish according to the wave polarisation, and the remail
are computed using some reduced set of Maxwell’s equations.

For the case of a laser wave propagating in one directionXyay depends only on
X, Px, andp_ . So one can further reduce the relativistic Vlasov (5) equation by looking fi
a specific class of exact solutions of the form, say%rDl

f(X, Px p)ﬁ Pz, t) = F(X’ px,t)S(py - Py(x7t))8(p2 - PZ(X’ t))
ThenF is solution of

OF  POF (. PB-PBNIF

at y 0X y dPx

with y = (14 p2 + Py (X, t)2 + P(X, t)®)¥2. This results from the conservation of the gen-
eralised canonical momentum along the wave planePje: A, = const, andP, — A, =
const. Deriving with respect to time and using

OA |
E, = ———,
+ at
we get
aPy P,
Ll 2 _E,.
ot ot z

This mono-kinetic perpendicular description in the longitudinal axis is consistent with t
very low temperature of the targets (a few electron volts) while the longitudinal electr
temperature can reach the mega electron volt range during the interaction. Finally, u:
B, =curl A, we find that

19A2
%&—%%=53ﬁ
and we recover Eq. (4).

Instead of reducing the dimension or assuming a specific form for the solution one
also obtain another type of Vlasov equation by averaging over the magnetic orbits i
highly magnetised plasma like a tokamak plasma; this yields the drift-kinetic model whi
reads, in the case of a uniform external magnetic field,

of ExB
— — |-V f +E -V, f=0.
8t+<V||+ B2 ) xT +Ej

If the computational box is reduced to the plane perpendicuByttee drift-kinetic equation
reduces to the guiding-centre equation (3).

Finally, some simplification of the Vlasov equation may be obtained in some cases
using some other coordinate system. One example of this case i% hexisymmetric
model, wheref = f (r, v, vy, t), for which we have

dvr r odvy

+u— + Er+*

af af v2\ of vy Of
at ar r
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All the types of Vlasov equations we have listed above can be written

%+U(X,t)-vxf=0, 9)
whereX stands for the phase space coordinated hisch divergence free vector field having
up to six components in the full three-dimensional case. For example, in the case of the
nonrelativistic Vlasov equationX = (X, y, z, vy, vy, vz) andU (X, t) = (vy, vy, vz, Ex+
vyB; —v,By, Ey + v,Bx — vxB;, E; + vxBy — vy By) with all components of the electric
and magnetic fields depending gny, z, andt.

3. THE TIME-SPLITTING PROBLEM

For an advection field which is divergence-free, as is the case for our Vlasov equation
Eqg. (9) can also be written in conservative form,

of .

5 +divx(U(X,t)f) =0. (20)
For numerical purposes, conservation laws like (10) can be further reduced by splitti

Indeed, splitting the components ¥finto two setsX; and X, (10) can be written

of . .
i + divx, (U1(Xq, Xz, t) f) + divx, (Ua(X1, X2, 1) f) = 0. (11)

Moreover, it has been verified (see, for example, [13]) that one can use a second ord
time numerical scheme for solving separately at each time step,

of .
a + lexl(Ul(le Xo, 1) f) =0
and

O vy, (Ua(a, X, ) 1) =0,
and keep the second-order accuracy for the whole equation (11) by alternating the sol

For our purposes, this will be useful in the case where botk, Bim X, X2, t) =0 and
divx,U2(X1, X2, t) =0, as in this cas®; andU; can be taken out of the div operator and
yield the traditional advective form.

Applying this, first for the nonrelativistic Vlasov equation (6), we notice that=0
anda,, (E+v x B); =0, withi standing forx, y, or z. Hence, it is possible to split (6) into
six 1D advections. This method has already been applied in the 1D case, as we menti
in the Introduction and also in the 2D case [14, 15].

In the case of the relativistic Vlasov equation (5), we still have obvioagty/y =0,
but no such property for the force term which now depends on the Lorentz facter,
V14 5+ pj+ Pl

However, a straightforward computation shows that we still havg(Biv- (p/y) x
B) = 0. Hence we could split the equation into one 3D advection for the momentum sp:
and three 1D advection for the physical space. Whether the splitting of the physical s
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could be a problem needs some further investigation, as it results in a loss of isotropy ha
three special directions. Finally, in the other models we introduced, splitting does not se
justified a priori and a full multidimensional advection scheme for Eq. (9) is needed.

4. THE SEMI-LAGRANGIAN METHOD

Let us now introduce the semi-Lagrangian method on the abstract model (9). For t
we need to introduce the characteristics of (9), which are the solutions of the dynam
system

dX

— = UX(t),t). 12

T (X(®), t) (12)
Let us denote b (t; x, s) the solution at timé whose value ix at times. TakingX(t) a
solution of (12), we have

af  dX

d
Gr(FXO,0) = -+ = - Vx f

f
_ ?Tt FUX@®).1) - Vxf =0,

which means that is constant along the characteristics. This can also be written
f(X(t;x,9),1) = f(X(s;X,9),8) = f(X,9)

for any timeg ands and phase space coordinatet is this property which will be used in
the semi-Lagrangian method to solve a discrete problem, which is defined by introducir
finite set of mesh point&y,)m=1....n Which may or may not be equally spaced. Then, givel
the value of the functiorf at the mesh points at any given time step, we obtain the ne
value at mesh point, using that

For each mesh poing,,, f is computed in two steps:

1. Find the starting point of the characteristic ending.ati.e. X (t, — At; Xm, th + At).
2. Computef (X(t, — At; Xm, th + Al), t, — At) by interpolation, asf is known only
at mesh points at timig — At.

In the case of the 1D Vlasov—Poisson system (1)—(2), the numerical scheme descr
in the introduction actually involves these two steps. But, since the advection field for e:
half time step does not depend on the variable to be advected, step 1 is straightforwar

Now, for the general case, in order to deal with step 1, we need to introduce a ti
discretisation of (12). As in general no information on the advection funttigs known
at any given time, we need to use a two time step scheme in order to remain second c
in time. The starting point of the characteristic is obtained, to second-order accuracy,

Xm — X(th — At)

AL = U(X(tn), tn)’ (13)
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writing, still to second-order accuracy,

X(th + At) + X(th — At)
> ;
there existsl, such thaX (t,) = Xm — dm andX (t, — At) = Xm — 2dy,. Then (13) becomes

X(tn) =

dm = AtUXm — dm, tn) (14)

which can be solved iteratively for the unknodg.
Oncedy, is known f (xm, — 2d,, ty, — At) is interpolated using a tensor product of cubic
B-splines.

Remark 4.1. Let us recall a few properties of the semi-Lagrangian methods that ha
been derived in previous investigations (see [6]):

e If U is known independently of a one time step method can be used by introducin
an intermediate time step.

e Thetime step is not restricted by the usual Courant condition, but by the deformatio
Courant numbef| (80U /9x)At|| < 1 which is often less restrictive. In practice, accuracy
conditions impose the time step which is usually a few Courant time steps.

e Cubic interpolation appears to be a good compromise between accuracy and «
Linear interpolation is too dissipative to be used.

e When using cubic interpolation fdk, linear interpolation is sufficient fdd .

e Bermejo [7] interpreted this method as a finite-element PIC method and proved
convergence.

5. IMPLEMENTATION OF THE GUIDING-CENTRE MODEL

Let us now give a few more details on the implementation of the semi-Lagrangian mett
in the two-dimensional case of the guiding-centre model, a case where all the additic
difficulties we are investigating are concentrated. Time-splitting cannot be performed
we need a full two-dimensional scheme, the advection field, which is, in this case, the
velocity depends ox. Moreover, passing to a higher dimension does not add any ne
difficulty. So the implementation of this specific case is a good benchmark for our meth

The model we consider is the guiding-centre Vlasov equation,

0
%P - Vyp =0, (15)
ot
where
ExB
-

coupled to the Poisson equation

—Ap=p (16)

with E = —V¢ andB is a given external magnetic field.
In this case the functiobl of the previous section is the drift velocityy = E x B/B?
whose coordinates we denote tay, andvpy.



208 SONNENDRJCKER ET AL.

5.1. Computation of the Origin of the Characteristics

Applying the two-time step scheme as described in the previous section, the prob
comes down to solving the fixed point equation (14). Denotinghy Bij) the coordinates
of the displacement, at the mesh poink, whose coordinates are denoted By, §;),
Eq. (14) becomes

aij = Atupx(Xi — aij, Yj — Bij, tn) (17)
Bij = Atvpy(Xi — aij, Yj — Bij, th). (18)

In order to solve this nonlinear system (17)—(18)¢gsandpg;; are small, the first obvious
approach is to take

vpx(Xi — aij, Yj — Bij» th) = vox(Xi, ¥j, th)

and

vpy(Xi — @ij, ¥j — Bij, th) = vpy(Xi, ¥j, th).

However, this method is only first-order accurateAinand it will not be convenient, or at
least, as we shall see later in the numerical test, it would require much smaller time st
In order to remain second-order accurate, the system can be solved iteratively by

O{ﬁ+1 = AtUDX (Xi — (Xlk] s y] — ﬂllj s tl"l)»
'Bii?rl = AtUDy(Xi - Olikj Y — ,Bh R tn),

starting from an initial guess( . 57).

This scheme can be proved to be convergentfiosmall enough. Notice that,, known
only on the mesh, needs to be interpolated at the paint («f, y; — Bf). Numerical
experiments performed for climate equations [6] have proved that linear interpolatior
sufficient, which was confirmed in our problems.

Using the ansatz that, is linear in each grid cell, we also tried the more sophisticate
Newton method in order to compute the solution of (17)—(18). The algorithm reads

aikj+l _ aikj Df K k 7lf kK ok
gern | = | g — (Df (erj. A)) (e B))-
ij ij
where
k k k
aij_AtUDX(X_aij’y_lBij)
f(Ol,kl,,Bh):

,Biﬁ — Atvpy (X — Olikj VY — /Sikj)

and the Jacobian matrix df is given by
At dfy
ool ol | <1+ Atdyupx  Atdyupy >

of of

Df (o, Bf) =
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where we omitted indicating explicitly the dependencegbn ocikj andﬂi‘j for the sake of
clarity. Then(Df (e, B)) ™ f (e, B) can be computed using Cramer’s formulae for ¢
2 x 2 system, which yields the algorithm
1
ol = off — T [(of — Atvox(x —alf,y = ) (1+ Atiyuoy (x —of,y — )
— (B — Atvpy(x —aff, y — BE)) Atdyvox (X — o, y — )]
1
ﬂi‘j” = :35 N [(,Bi'ﬁ — Atvpy(x — ozik]-, y— ,Bi'})) (1+ Atdyvpx (x — aikj Y — ﬂiﬁ))
— (o — Atvpx(x —aff y = Bf)) Atdooy (x — aff .y — £ .
where
A = (1+ Atdwpx (X — i,y — BE)) (1 + Atdywpy (x —off. y — B))
The values of/p and its derivatives which are needed in this algorithm are computed usi

its mesh point values and the ansatz that it is linear in each cell.

5.2. The Two-Dimensional Spline Interpolation

Oncew;; andg;j are knownp (X — 2aij, X; — 26ij) is interpolated using a tensor product
of cubic B-splines. In order to do this we first need to compute the coefficigptsf the
cubic spline interpolation functios(x, y) given by

S(X, Y) = Z ( Z Nk B3v (X) B3K (Y)> .
—2<v<Ny—1 \ —2=<«x<Ny—-1

The splines must satisfy the interpolation conditions
S(Xi, Yj) = p(Xi, Yj, th — Al)

fori=1,..., Nx; j=1,..., Ny, and the two boundary conditions of the functjpim each
direction, which in our case are periodic in thalirection and natural in the-direction.

In order to compute the,, coefficients, we first solve thid, one-dimensional interpo-
lation problems,

S y) = Y. ¥Bsyx) forj=1... N,
—2<y<Ny—1

each verifying theN, interpolation conditions(x;, yj) = p(Xi, Yj, tn — At) and the peri-
odic boundary conditions which we denote by

=Y 7uBa(y)

—2<ic<Ny—1

and by

v=rop.
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Using these interpolation and boundary conditions, we need to Bijlireear systems, one

for each value of , involving the samely + 2)-dimensional matrix which reads, denoting
h= AX,

lw

3 3 3
~h ~h 0 & n O
6 6 12 6 6 12
W OW W oW W W
0 1 4 1 0
} 0 1 4 - (19)
61 . U |
0
1 4 1
1 0 v .. 0o 1

Note that we have written this matrix such that the first two rows correspond to the bound
conditions, the remaininbly to the interpolation conditions, and thid,(+- 2)-dimensional
unknown vector reads/f, 1, v15, ..., ¥, _o)-

Then we obtaim,, by solving theNy + 2 interpolation problems,

n(y) = Z Nk Bax(Y) forv=—-2..., Ny -1,

—2<k<Ny—1

verifying the Ny interpolation conditions,(y;) =y] and natural boundary conditions.
Using these interpolation and boundary conditions, we need to BRlye2 linear systems,

one for each value ob, involving the same Ny + 2)-dimensional matrix which reads,
denotingk = Ay,

£ 0 0 & &
0o & % 8 0 o
O 1 4 1 0
1 0O 1 4
— 20
- (20)
0
0 4
0 0 4

“ey

This matrix is written for the Ky 4 2)- d|men5|onal unkown vectom N, —1, v, —2. -
.N,—2) and the right-hand-side vectw vl yvN

In both matrices (19) and (20), the terms not explicitly written are all zeros, except 1
fours on the diagonal and ones on the upper and lower diagonals.
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Once the B-spline coefficienig, for all v andx have been computed, the valugadt the
origin of the characteristics is taken to be the value of the B-sglike— 2u;;, y; — 28i)).
If (xi — 2055, y; — 2Bij) belongs toki, xi+1] x [Y;j, Yj+1] the approximation of the function
p(Xi — 204j, Yj — 2Bij, th — Ab) is given by

(6 — 2ij, Vi —2B)) = Y ( D By (X — 20))Bac (Y —Zﬂij)>,

i—3<v<i \ j—3=«k<]j
where
Ba, (X)
(X =x%)% Xy < X < Xpp1,
1 | b3+ 3h2(x — X,41) + 30X — Xp41)2 = B(X — X113, Xps1 < X < X2,
6h3 | h3 + 3h2(X,13 — X) + 3N(Xp13 — X)2 — 3(Xot3 — X3, Xup2 < X < Xoq3,
Xvta — X)3’ Xp+3 = X < Xy44,
and Bz, (x) =0 for x < x, andx > X,44. To computes(x; — 2cij, yj — 2ij) for all Ny Ny
mesh points, require® (Ny Ny) floating point operations.
This algorithm can be fully parallelised. A description of the B-spline tensor produ
procedure of interpolation can be found in De Boor [16] ardrttierlin and Hoffmann [17].
5.3. Numerical Resolution of the “Almost” Tridiagonal Systems

In order to compute the B-spline coefficients with the method described above, we
confronted with the resolution of linear systems which are tridiagonal except for two ro
and colums. Instead of using full system solves, an ad hoc block decomposition of
matrices leads to a tridiagonal system solve coupled tox& Zystem solve. All those
matrices (19) and (20) have been brought by row and column exchanges to the block f

&1 &2
A
M=% & ,
y A

wherey is a matrix with two columns and a square positive definite tridiagonal matrix.

Then the block linear system
X b
“(3)=(2) &

can be solved using the following procedure: First, denoting by

5= <§1 2 ) ’
{3 s
we can eliminatey; this gives the system

6 —rA))x =b—21A1c (22)
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Thenx being known, we computg by resolving
Ay=cCc—yX. (23)

The system (22) is a R 2 system which can be solved explicitly.

We are now ready to write down the numerical algorithm; let us first notice that only t
right-hand side of system (21) is time dependant. Hence, we can factorise the Anaitrilx
assemble the 8 2 matrix (22) once for all in an initialisation step.

1. Initialisation
o factoriseA and store it
e compute and stor&~'y using the previously computed factorisation
e assemble the matrix— AA~1y
2. Time loop
e computeA~1c using the stored factorisation &f
e assembld — AA"1c
e solve (22) using the explicit formulae
e computey using the already compute valuesfflc, A~y and ofx.

The factorisation ofA and the subsequent resolutions of the systems involdnghich
involves a large part of the computations performed in the code, are performed us
optimised library subroutines.

5.4. The Time Marching Scheme

After having detailed the implementation of the semi-Lagrangian method for the guidir
center Vlasov equations let us now write down the time marching algorithm for the fi
guiding-center Vlasov—Poisson problem:

Start with an initial charge densityy(X, y). In order to initialise our two time step
advance, we first need to get the valuepoht the first time step. For this purpose, we
perform a Poisson solve which yiel&s, compute the drift velocitypg and use Eq. (13)
over half a time step usingyo as an approximation ofp (t = %At) in order to gefo;. This
procedure provides the needed accuracy in our particular problem; however, it might
necessary to use a more sophisticated method for different problems.

Thenp,_; andp, being given, the time loop reads

1. ComputeE,, with a Poisson solve from,.
2. Compute the drift velocityp,, from Ej,.
3. Computepn1, using the two time step semi-Lagrangian algorithm, frgpm, andE;,.

6. THE KELVIN-HELMHOLTZ INSTABILITY IN A PLASMA

In order to validate our code, we used two problems introduced by Ghkizalo[18].

6.1. First Test Case

First, we took a case where the growth rate of the instability can be computed analytice
This enabled us to check the accuracy of the code by comparing the analytical values:
the computed ones.
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Shoucri’s analysis [19] shows how to start a Kelvin—Helmholtz instability for our mod
(15)—(16) by picking aninitial condition of the forp(x, y, t = 0) = p°(y) + €p*(y) cogkx)
which yields through Poisson’s equatiog @f the forme = ¢°(y) + e¢*(y) cogkx). The
instability occurs by choosing properly the functiph which defines the perturbation
around the equilibrium solutionpf, ¢°). Shoucri picks®(y) = siny. Then he shows that
takingo! = s = sin(y/2), which he calls the neutrally stable solution and which amount
to taking p* = (k? — %‘) sin(y/2). The perturbation should remain constant for all tinie
k = ks = +/3/2; there should be exponential growth fo& ks and no instability fok > ks.
Moreover, the growth rate of the instabilities should be such that

Im% = ?(ks —Kk). (24)

In order to compare our code with this theory, we ran two simulations with the initi

condition

o(X,y,t =0) =siny 4+ 0.015 sin% cogkx),

wherek =27 /L, Lx being the length of the domain in thedirection. In both runs the
domain in they-direction went from 0 to 2, the number of mesh points in each direction
was 128 and the time step 0.5.

In the first case we tooky =7 which yieldsk =27/7=0.89> ks =+/3/2=0.86.
Hence, we should be in the stable case. The results of this run are displayed in Fi
which clearly shows that there is no instability. In Fig. 2 we also see that the first mode
not growing.

In the second case we toalk = 10 which yieldsk = 27 /10=0.62 < ks = +/3/2 = 0.86.
This time we should be in the unstable case, which is confirmed by the results displaye
Fig. 3. Figure 2 also shows that the first mode is growing. Moreover, the growth rate of
instability Im(w), according to Eq. (24) should have a value of 0.129kfet /3/2 and
k=2r/10. In Fig. 4, where we zoom on the linear part of the temporal behaviour of the fi
mode, the slope for log? is 0.248. This should be twice the value we are looking for. Thy
computed growth rate is 0.124, which is in very good agreement with the theoretical val

In this case, we also displayed the evolution of the enef@f dx and enstrophy
[ p?dx, which are theoretically invariants of the system, in Fig. 5. As expected for a ser
Lagrangian Vlasov code (see [3]) the energy decreases during the smoothing phase, v

FIG. 1. The stable casé:=0 (left) andt = 1000 (right).
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FIG. 2. The first Fourier mode: log? with respect to time, unstable case (left) and stable case (right).

FIG. 3. The unstable case: from left to right and top to bottom0, t =20, t =30, t =40, t =50, and
t =1000.
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FIG. 4. Computation of the growth rate of the linear part of the first Fourier mode.

the microstructures cannot be resolved within a cell and, thus, get smeared out. Ex
for this phenomenon, which is not unphysical, although it does not appear in the Vla:
equation, as it mimics through a numerical artefact the effect collisions would have inar
system, the energy is very well conserved over many time steps.

6.2. Second Test Case

In the second test case, still following Ghizzial. [18], we started the computation with
an initial charge density

p(X,y,t =0) = 1L.5secliy/0.9)(1 + 0.08 sin2kgx))

in order to start a Kelvin—Helmholtz instability. The computational mesh consisted of 1
points in each direction with 8 x <40 and—5<y <5. We used a time step of 0.5 in the
dimensionless units.

In order to solve the fixed point equation (14), we tried the three different procedures
described in Section 5.1:

1. Fixed point iteractions which took around six iterations to converge.

11 L1
105 | 1 105 b
1 x 1 1
095 t 1 095
09+ 09t
0.85 1 085 |
08 08

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 300 900 1000

FIG. 5. The invariants: energy (left) and enstrophy (right).
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2. The Newton method which took only two iterations to converge after the first tin
step. For both of these methods we kept the valuesarid s from the previous time step
to start the iterations.

3. Doing no iterations at all, assuming thatx, — «ij, Yj — Bij) was close enough to
U (%, y;j). This worked fine, provided we divided the time step by 10.

Through the choice of the initial condition, we excited the second mode. Hence,
instability started right from the beginning of the run and saturated around 26, as we
can see on Fig. 6, yielding two circular roll-up vortex structures. When the microstructu
become of the order of the mesh size, smoothing occurs; see Fig. 7. Then after some ti

FIG. 6. Development of the first instability, from left to right and top to bottbea0,t =5,t =10,t =15,
t =20, andt =50.



FIG. 7. Between the instabilities, left= 100 and right = 200.

FIG. 8. Development of the second instability, from left to right and top to bottea235,t = 240,t = 245,
t=250,t =260, and = 275.




FIG. 9. Steady-state, left=1000 and right = 5000.
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FIG. 10. Evolution of log of the first (left) and second (right) Fourier modes with respect to time betwee
t =0 andt =500.
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FIG.11. Graphs of the.! norm (left) andL? norm (right) with respect to time.
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FIG. 12. Evolution of theL* norm (left) andL? norm (right) with respect to time betweér= 0 andt = 500
for the Kelvin—Helmholtz instability.
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second instability takes place (Fig. 8), where the two distinct structures merge and roll
around each other. Here again, there are microstructures which smooth out when they 1
the scale of the mesh size, as we can see on Fig. 9. This second instability can be expl:
by the fact that the two-vortex structure is an unstable equilibrium state. Mode 1 acts :
perturbation, and at some time, depending on the roundoff errors, the equilibrium is |
and the second instability takes place until the second mode vanishes, as we can s
Fig. 10.

As represented on Figs. 11 and 12, tHenorm, i.e.| f dx dy, even though it decreases
slightly during the two unstable phases, is conserved with an accuracy better than 1%.
L2 norm, i.e.[ f2dx dy, decreases strongly on two occasions and is stable the rest of-
time; this is the same phenomenon we discussed in the previous test case and which o
when the microstructures get smoothed out as they become smaller than a cell size.

The first and second Fourier modes are also shown on Fig. 10. The first mode sh
a linear growth, until the second instability, and becomes steady afterward. The sec
mode growth during the first instability remains steady until the second instability, and tf
decreases and stabilises at a smaller value.

7. CONCLUSION AND PERSPECTIVES

In this paper, we introduced the semi-Lagrangian method for several types of Vla:
equations and discussed the simplifications that can be used in the implementation for <
specific models, where a time-splitting procedure can be applied. On the other hand
described the full method which works for any type of Vlasov equation and implement
it for the case of the guiding-centre Vlasov—Poisson model which is an example that cc
not be solved accurately using the splitting procedure. The numerical results obtainec
this example were very satisfying.

Building on the methods we introduced here we are now ready to develop a Fortrar
module library, implementing the different kinds of advection types that are needed. Asst
bling these modules will then enable us to treat many problems occurring in plasma phy
using the semi-Lagrangian methodology. Let us also mention that this methodology doe:
rely upon the use of regular grids. All we need is a set of lines in each direction for the spl
interpolation, but these need not be equally spaced. On the other hand, as mostly throug
use of parallel computers, more and more memory is available on today’s supercompt
it becomes quite conceivable to solve 4D problems with this method with good resolutit
and even 5D or 6D problems, where the resolution requirements are not too important,
be solved and in a few years medium sized 5D or 6D problems should become feasibl
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